Fluid-like behavior of a one-dimensional granular gas.

نویسندگان

  • Fabio Cecconi
  • Fabiana Diotallevi
  • Umberto Marini Bettolo Marconi
  • Andrea Puglisi
چکیده

We study the properties of a one-dimensional (1D) granular gas consisting of N hard rods on a line of length L (with periodic boundary conditions). The particles collide inelastically and are fluidized by a heat bath at temperature Tb and viscosity gamma. The analysis is supported by molecular dynamics simulations. The average properties of the system are first discussed, focusing on the relations between granular temperature Tg=mv2, kinetic pressure, and density rho=N/L. Thereafter, we consider the fluctuations around the average behavior obtaining a slightly non-Gaussian behavior of the velocity distributions and a spatially correlated velocity field; the density field displays clustering: this is reflected in the structure factor which has a peak in the k approximately 0 region suggesting an analogy between inelastic hard core interactions and an effective attractive potential. Finally, we study the transport properties, showing the typical subdiffusive behavior of 1D stochastically driven systems, i.e., approximately Dt(1/2), where D for the inelastic fluid is larger than the elastic case. This is directly related to the peak of the structure factor at small wave vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Simulation of the Hydrodynamics of a Two-Dimensional Gas—Solid Fluidized Bed by New Finite Volume Based Finite Element Method

n this work, computational fluid dynamics of the flow behavior in a cold flow of fluidized bed is studied. An improved finite volume based finite element method has been introduced to solve the two-phase gas/solid flow hydrodynamic equations. This method uses a collocated grid, where all variables are located at the nodal points. The fluid dynamic model for gas/solid two-phase flow is based on ...

متن کامل

Computational Fluid Dynamic- Two Fluid Model Study of Gas-Solid Heat Transfer in a Riser with Various Inclination Angles

A two fluid model (TFM) was used to study gas-solid heat transfer in a riser with different inclination angles. A two dimensional pipe with 5.8 cm internal diameter and 5 meter length was chosen.  Effect of bed angle and solid particles feed rate were studied on the heat transfer behavior of gas and solid particles. Obtained results from simulation are compared with the experimental data in the...

متن کامل

Dynamics of Vibrated Grains

We study number density distribution and the behavior of time correlation functions in the density of grains for a quasi-two dimensional system of vibrated grains. We study the system at various packing fractions, from low to high. At low densities we recover usual gas like behavior, reflected in a Poissonian statistics for the number density distribution. At higher densities we notice effects ...

متن کامل

Capturing shock waves in inelastic granular gases

Shock waves in granular gases generated by either a vertically vibrated granular layer or by hitting an obstacle at rest are treated by means of a shock capturing scheme that approximates the Euler equations of granular gas dynamics with an equation of state (EOS), introduced by Goldshtein and Shapiro [ J. Fluid Mech. 282 (1995) 75], that takes into account the inelastic collisions of granules....

متن کامل

CFD Modeling of the Feed Distribution System of a Gas-Solid Reactor

Granular flow simulation using CFD has received a lot of attention in recent years. In such cases, CFD is either, coupled with Discrete Element Method (DEM) techniques for appropriate incorporation of inter-particle collisions, or the Eulerian CFD approach is used in which granular particles are treated as they were fluid. In the present study, a CFD analysis was performed...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 120 1  شماره 

صفحات  -

تاریخ انتشار 2004